An Online Algorithm for Constrained Face Clustering in Videos

Motivation & Objective

- Face clustering is challenging: faces exhibit wide variability in scale, pose, illumination, expressions.
- Existing face clustering algorithms are mostly offline does not help if the complete data is not available or is too large.
- Accurate *online* face clustering in long, real world videos.
- Applications: video summarization, indexing, retrieval.

Methodology

- Shot boundary detection: Distances between three consecutive frames are used to detect shot boundaries. All frames within a shot are processed together.
- Feature extraction: Dlib Face Detector is run on each frame followed by OpenFace to extract FACENET embeddings.
- **Facetrack creation**: Faces in consecutive frames with short spatial distance and feature distance are clubbed together to form facetracks: \mathcal{V}_k .
- Online Clustering: With K facetracks $\{\mathcal{V}_k\}_{k=1}^K$ and set of cluster centers \mathcal{C} , construct constraint matrix \mathbf{Q}

$$\mathbf{Q}(p,q) = \begin{cases} 0 & \text{if } \mathcal{V}_p \text{ and } \mathcal{V}_q \text{ overlap in tim} \\ 1 & \text{otherwise} \end{cases}$$

Construct distance matrix \mathbf{D} and run Algorithm 1

$$\mathbf{D}(l,k) = d(\mathbf{c}_l, \mathcal{V}_k) = 4 - \frac{1}{N_k} \sum_{j=1}^{N_k} \|\mathbf{v}_k^j - \mathbf{c}_l\|_2^2$$

Tanaya Guha^{1,2} Prakhar Kulshreshtha¹

²University of Warwick, UK ¹Indian Institute of Technology, Kanpur

Online Clustering Algorithm

Algorithm 1: Facetrack clustering for a given shot. **Input:** Face track features in the current shot: $\{\mathcal{V}_k\}_{k=1}^K$, Initial clusters: C**Output:** Updated C**Initialize:** ind = [1, 2, ..., K], W = all-ones matrix. Compute Q, D using (1) and (1)while length(ind) > 0 do if \mathcal{C} not empty && $\max_{l,k}(\mathbf{D} \odot \mathbf{W}) \geq \tau$ then $(l,k) \leftarrow \operatorname{argmax}_{l,k}(\mathbf{D} \odot \mathbf{W})$ $|k^* \leftarrow \operatorname{ind}[\hat{k}]|$ Update cluster center $\mathbf{c}_{\hat{i}}$ with \mathcal{V}_{k^*} else Add new cluster $(\hat{l}, \hat{k}) \leftarrow (L+1, 1)$ $k^* \leftarrow \operatorname{ind}[\hat{k}]$ $\mathbf{c}_{new} \leftarrow \mathsf{mean}(\mathcal{V}_{k^*})$ $\mathcal{C} \leftarrow \mathcal{C} \cup \mathbf{c}_{new}$ end Recompute ${f D}$ for ${f c}_{\hat{\imath}}$ $\mathbf{W}(\hat{l},:) \leftarrow \mathbf{Q}(\hat{k},:)$ Delete $\mathbf{D}[:, \hat{k}], \mathbf{W}[:, \hat{k}], \mathbf{Q}[\hat{k}, :], \mathbf{Q}[:, \hat{k}], \mathbf{ind}[\hat{k}]$ end

Performance Evaluation

- Buffy database (BF2006) [1]: 229 facetracks of 6 characters (17, 337 faces)
- Notting Hill database (NH2016) [2]: 277 facetracks of 7 characters (19, 278 faces)

Table 1: Comparison with the online face clustering method
--

	BF2006		NH2016	
	TCCRP $[3]$	Proposed	TCCRP	[3] Proposed
Homogeneity	0.93	0.68	0.92	0.88
Completeness	0.44	0.69	0.44	0.89
V measure	0.60	0.68	0.58	0.89
clusters	57	7	61	7

Table 2: Comparison with the state-of-the-art (offline) clustering methods in terms of clustering accuracy (%)

Method	BF2006	NH2016
ULDML [4]	49.29	43.82
cHMRF [2]	61.87	47.94
FaceNet $+ aCNN$ [5]	89.90	90.17
FaceNet + GMM	84.21	73.46
FaceNet + Kmeans	82.92	71.66
Proposed	82.12	93.84
Proposed + GMM	93.79	94.17

Summary

- Proposed an online clustering algorithm that performs as good or better than existing online or offline methods.
- Used FACENET embedding for robust representation of faces, and several spatio-temporal constraints to cluster the faces as they appear.
- Achieved high clustering accuracy on two real world video databases.
- Can be extended by allowing online splitting and fusing of clusters.

Qualitative Results

6 character clusters, 1 noisy cluster (7th row) in BF2006.

6 character clusters, 1 noisy cluster (7th row) in NH2016.

Code and Experiments

- Code and experiments available at https://github.com/ankuPRK/COFC
- For queries and suggestions please email to ankuprk@gmail.com

References

- [1] M. Everingham, J. Sivic, and A. Zisserman, "Hello! my name is... buffy-automatic naming of characters in tv video," in BMVC, 2006.
- [2] B. Wu, B. Hu, and Q. Ji, "A coupled hidden markov random field model for simultaneous face clustering and tracking in videos," Pattern Recognition, vol. 64, pp. 361–373, 2017.
- [3] A. Mitra, S. Biswas, and C. Bhattacharyya, "Bayesian modeling of temporal coherence in videos for entity discovery and summarization," IEEE Trans PAMI, vol. 39, no. 3, pp. 430–443, 2017.
- [4] R. G. Cinbis, J. Verbeek, and C. Schmid, "Unsupervised metric learning for face identification in tv video," in *ICCV*, pp. 1559–1566, 2011.
- [5] V. Sharma, M. S. Sarfraz, and R. Stiefelhagen, "A simple and effective technique for face clustering in tv series,"