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Fig. 1. The MR-Image is collected as K-Space data (a). orig-
inal image can be recovered by IFFT of (a)

ABSTRACT

In this project we explore the paradigm of MRI Recon-
struction. MRI scans are collected using Magnetic-Gradient
coils, which collect the image data in K-Space domain, which
is basically just the Fourier Transform of the original image.
Sampling is very time consuming so MR image is recon-
structed from undersampled data via Compressed Sensing.
We explore Compressed Sensing (CS) in our project. Then
we explore different CS-based reconstruction methods.

Index Terms— MRI, K-Space, Compressed Sensing,
POCS, SparseMRI, DictMRI

1. INTRODUCTION

MRI images are scans of cross section of human body. MRI
images are collected using Magnetic-Gradient coils, which
collect the image data in K-Space domain, which is basically
just the Fourier Transform of the original image. Collecting
these samples requires the patient to stay still for 15-90 min-
utes, which is often inconvenient. Hence, a technique called
Compressed Sensing has been developed for fair reconstruc-
tion of MRI image at sub-nyquist sampling rate. We explore
CS-based reconstruction techniques in our project.

2. COMPRESSED SENSING

2.1. Idea

Compressed Sensing is based on the idea that a randomly un-
dersampled signal is recoverable if it is sparse some other

Wavelet Transform Reconstruction using 2% Coeffs

Fig. 2. Wavelet transform of original image and then recon-
struction by using just top 2% coefficients

Transform Domain i.e. to be CS-recoverable, a signal has
to satisfy two conditions:

e [t should be Sparse in some known Transform domain.
e It should be sampled randomly.

Hence instead of sampling the signal at nyquist rate and then
compressing it, we directly sense the data in compressed
form, hence the name Compressed Sensing [1].

2.2. CSin MRI

The MRI data is collected in K-Space domain, which is just
the FFT of image domain. Now as Fig. 2 suggests, MRI
image is sparse in Wavelet Transform Domain.

Also, the IFFT image of Randomly undersampled Fourier
Data manifests as random noise in the image domain. How-
ever, if the undersampling is not random, then the recovery of
signal is not possible (Fig. 3 ).

The undersampling can be thought of as multiplying the K-
Space image with a binary mask of same size. We have used
two kinds of mask: uniform random sampling mask, and vari-
able density sampling mask.

2.3. Optimisation Problem

The CS can be mathematically defined as an optimisation
problem. Let m be the image in pixel domain, y be the col-
lected samples in Fourier domain, F,, = AF, where A is
the sampling-mask, F' is the Fourier-matrix, and let ¥ be the
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Uniform undersampling ~ Random Undersampling

Fig. 3. IFFT of Uniform v/s Random undersampling of K-
Space data. Signal can be recovered by denoising (b)

Fig. 4. Test images are (from top left) MRI scans of brain,
side-brain, spine, foot and knee

transform domain where m is sparse. Our optimisation prob-
lem to get reconstructed signal m,. is:

m, = ARGMIN,,||¥m|os.t. F,,m=y

This problem is n.p. hard to solve so we relax the optimisation
problem to be:

m, = ARGMIN,{|F,m —y|3 + A ¥m]||;}

3. EXPERIMENTAL SETUP

Michael Lustig has a very nice exercise on CS for MRI on his
homepage [2]. We found the exercise very helpful in under-
standing the basic concepts of CS, and its application in med-
ical imaging. We use 5 images for our methods (Fig. [?]).
The random subsampling in K-Space domain is simulated by
undersampling this K-Space data randomly to retain just one
third coefficients. Since most of the energy is concentrated
around origin so two undersampling masks (also provided in
the exercise) are used: Uniform density mask, and Variable
Density (Gaussian) mask (Fig. 5).

The Sparsifying Transform is the Daubechies Wavelet
Transform (DWT Toolbox given with the exercise). We have
also used K-SVD toolbox ([3]). We have used author’s code
for SparseMRI [4].
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Fig. 5. Random Sampling masks

4. RECONSTRUCTION METHODS

4.1. Projection onto Convex Sets (POCS)

The POCS method is an iterative solution of the CS Optimi-
sation problem. We apply soft threshold in Wavelet Domain
and then enforce data-consistency in Fourier Domain. The
algorithm can be formulated as (details in [2]):

e Initialise y, = y and m, and then repeat until conver-
gence (more details in [2]):

e m, =IFFT(y;)

e Take DWT of m,, soft-threshold all coefficients by A,
take IDWT and store in m,.

e y, = FFT(m,) and enforce data consistency (non-
zero coefficients of y are forced-set into y,. )

4.2. Non-Linear Conjugate Gradient Descent with Back-
Tracking Line Search (SparseMRI)

SparseMRI[4] modifies the original problem statement to in-
clude Finite Differences also i.e. enforce sparsity in both
DWT domain as well as in Finite Differences domain (FD):

m, = ARGMIN,,{||Fym —y|%+ X|¥ml|; + oTV (m)}

where Total Variation is TV (m) = ||FD(m)||;. Since MRI
is a continuous and smooth image so it should be sparse
in TV domain. They solve this optimisation problem us-
ing Non-Linear Conjugate Gradient Descent (NLCGD) with
Back-Tracking line search [details in [4]].

4.3. Adaptive Dictionary for MRI (DictMRI)

ADL[5] basically uses an overcomplete dictionary of image-
patches as the sparse domain. The dictionary is learnt by ex-
tracting patches from the image. The Optimisation Problem
can be formulated as

min E |Ri;m — Dayj|| +V||Fum—y||§
m,D,I" &
i,
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where R;;z is the (4, 7)™ patch, a;; is its sparse projection
via Dictionary D. Image m, Dictionary D and «;;(s) are
learnt in this algorithm.

The Initialisation is y, = y and m, and then following
steps are repeated repeat until convergence:

o Extract patches from image

e Learn Dictionary D over a random subset of these
patches using K-SVD.

e Obtain the sparse vectors cy; for each patch using
OMP.

e Reconstruct all the patches and combine these patches
to create a modified image.

e Obtain the FFT of this modified image and restore the
Original K-Space coefficients.

e Take IFFT to obtain the image.

Basically we iterate between learning Dictionary with
reconstructed patches via K-SVD, and then combining the
patches followed by enforcing data consistency in Fourier
Domain (details in [5]). The time complexity of various steps
of this algorithm are given in [5]:

e K-SVD: O(SNKnTyJ), 6J ~ 1
e OMP: O(NKnTyp)
e FFT and IFFT: O(P log P)

Here, N: No. of patches, ¢: Fraction, K: No. of Dict. atoms,
n: Patch size, Ty: Sparsity, J: iterations in K-SVD, P: Im-
age size. It can be easily seen that K-SVD and OMP are the
bottleneck. We try to improve this method.

5. RESULTS AND INFERENCE

We’ll evaluate our reconstructed images by obtain the RMSE
and Structural Similarity Index (SSIM) w.r.t. the Original im-
age. A good reconstruction will have higher SSIM, and lower
RMSE. First we’ll observe reconstruction error for variable
density mask and uniform random mask. Results will show
that for same undersampling factor, variable density mask
is preferable. Then we’ll show experiments using different
methods for variable density masks.

Image Unif | VarDens
Brain | 0.0232 | 0.0018
Brain(s) | 0.0245 | 0.0004
Spine | 0.0441 | 0.0006
Foot 0.0646 | 0.0031
Knee | 0.0498 | 0.0004

Table 1. Reconstruction evaluation for Unif. and VarDens
Sampling

5.1. IFFT Reconstruction

The simplest way to reconstruct the images is simply taking
the IFFT of the undersampled K-Space data. The undersam-
pled coefficients are upscaled by inverse of their probability,
to compensate for the energy of unsampled coefficients. For
uniform sampling mask, the probability of getting sampled
for each coefficient is equal. For variable density mask, prob.
is higher for coefficients which are closer to the Origin, which
makes sense since most of the coefficients are concentrated
near origin so more samples should be take near it. The re-
sults are given in table 1. Note that for each mask finally sam-
ples only 33% of coefficients. Yet results for variable density
mask are much better. Hence, we’ll use this mask only for
further experiments (in real life setting, one can generate a
VarDens mask and then take samples at only those locations
where VarDens(i,j) = 1).

5.2. Results for CS-based algorithms

As we said we have tried three algorithms: POCS, SparseMRI,
and DictMRI. For SparseMRI, we used author’s code and
their own parameter settings. POCS and DictMRI were im-
plemented by ourselves. We tried these algorithms for 2
different undersampling factors of 3.0 and 8.5. The results
for undersampling factor of 3.0 are given in Table 2 and for
factor of 8.5 in Table 3. The results for POCS here are far
better than those given in presentation, because we changed a
step in the algorithm. Earlier we were enforcing data consis-
tency using scaled coefficients i.e. Force (3, j)th coefficient to
always be Y (¢, j)/p(4, j), if it was sampled. However (4, j)th
coefficient should just be Y'(4,5). Correcting this step led
to increase in performance. We are using 50 iterations, and
A =0.01.

For the DictMRI algorithm, we took the patch-size to
be 6x6, stride 3, and the dictionary size as 36x36. Random
patches to learn K-SVD were set to 10k. Increasing the dic-
tionary size doesn’t seem to have much effect. Also, we tried
three different methods of initialising the dictionary:

e Learnt Dictionary: We learnt the dictionary on 3 im-
ages and used it as initialising dictionary for other 2
images.

o K-Means Initialisation: We perform K-Means with



Image IFFT POCS | SparseMRI | DictMRI
Brain | 0.0018 | 0.0007 0.0006 0.0065
Brain(s) | 0.0004 | 8.1e-05 0.0001 0.0001
Spine | 0.0006 | 0.0001 0.0001 0.0002
Foot 0.0031 | 0.0009 0.0001 0.0009
Knee | 0.0004 | 0.0001 0.0002 0.0002

Image IFFT | POCS | SparseMRI | DictMRI
Brain | 0.5777 | 0.7650 0.7437 0.6647
Brain(s) | 0.7999 | 0.9618 0.9716 0.9536
Spine | 0.6888 | 0.9404 0.9593 0.9174
Foot 0.3633 | 0.8280 0.9833 0.6388
Knee | 0.8105 | 0.9618 0.9620 0.9490

Table 2. Evaluation of RMSE (upper table) and SSIM (lower
table) for CS-based algorithms for undersampling factor of 3

K=36 on the random patches, and use centers of all
clusters as initialising columns of dictionary

e Correlation Based Initialisation: We compute pair-
wise distances between all random 10k patches and
choose 36 most distant patches as columns.

Out of the three methods K-Means was performing best so we
took K-Means method for all subsequent experiments. The
RMSE, SNR and SSIM variation for the 1st MRI image for
DictMRI is given in Fig 6. The SNR decays and then re-
mains constant. So the performance seems bad. However, for
the undersampling by 8.5 case, SNR keeps increasing, RMSE
keeps decreasing and SSIM also keeps increasing (Fig 7). But
still the overall performance of DictMRI is coming out to be
inferior to other two methods, despite taking more time and
memory to execute.
The average time taken by all the algorithms is:

e POCS: 32.1s for 50 iterations
e SparseMRI: 118.9s for 15 iterations

e DictMRI: 789.5s for 50 iterations

6. CONCLUSION

We explored the paradigm of Compressed Sensing in the
image-modality of MRI. CS-based algorithms are very ef-
fective in recovering MRI images. Out of the three methods
we saw, according to our experiments, the winner in terms of
performance is clearly SparseMRI, but POCS takes around
one fourth time and still gives comparable results. Results of
DictMRI are also acceptable, they are far better than simple
inverse FFT, but we had hoped for it to easily beat other al-
gorithms by a good margin. We tried hard and improved it a
little bit but still it didn’t perform as per our expectations. We
conclude with Fig. 8 comparing the reconstructions of these
methods.

Image IFFT | POCS | SparseMRI | DictMRI
Brain | 0.0150 | 0.0014 0.0020 0.0015
Brain(s) | 0.0324 | 0.0004 0.0002 0.0003
Spine | 0.0027 | 0.0004 0.0003 0.0004
Foot 0.0080 | 0.0043 0.0018 0.0017
Knee | 0.0010 | 0.0009 0.0004 0.0004

Image IFFT | POCS | SparseMRI | DictMRI
Brain | 0.1583 | 0.6871 0.6742 0.6177
Brain(s) | 0.3207 | 0.9329 0.9376 0.9185
Spine | 0.4542 | 0.8933 0.9119 0.8940
Foot 0.2935 | 0.7332 0.8826 0.7048
Knee | 0.6693 | 0.9153 0.9214 0.8974

Table 3. Evaluation of RMSE (upper table) and SSIM (lower
table) for CS-based algorithms for undersampling factor of
8.5
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Fig. 6. SNR, RMSE, SSIM variation for DictMRI for under-
sampling factor of 3
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Fig. 7. SNR, RMSE, SSIM variation for DictMRI for under-
sampling factor of 8.5
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Fig. 8. IFFT of Brain MRI K-Space undersampled by 8.5 (a)
and its Reconstruction by POCS (b), SparseMRI (c), DictMRI
(d)
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