CS698A Final Project Report

Stacked Attention Networks for Image Questioning ANswering Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Smola

Prakhar K, Preetansh Goyal, R.N.Viswanadh

IIT KANPUR India

8-11-2016

Outline

- Image Question Answering: Introduction Introduction: Image Question Answering SOA Paper: Stacked Attention Networks 2 Introduction Image Model Question Model CNN based question model Stacked Attention Networks Model 1 Model 2
- 5 Model 3
- 6 Model 4

Results

Contributions

Introduction: Image Question Answering

An Image QA system takes an input image and a natural language question pertaining to the image and produces an answer as the output.

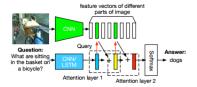
Q: What type of animal is this? Q: Is this animal alone?

Q: Is it snowing? Q: Is this picture taken during the day?

Q: What kind of oranges are these? Q: Is the fruit sliced?

Q: What is leaning on the wall? Q: How many boards are there?

Figure: Sample images and questions in VQA dataset


In our presentation, we are interested in approaches with single word answer outputs.

Prakhar K, Preetansh Goyal, R.N.Viswanadh

proposed method that allows for multi-step reasoning for image QA

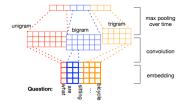
Original Image First Attention Layer Second Attention Layer

SAN consists of 3 major components

- image model
- Q question model
- Istacked attention networks

Image Model

A CNN, VGGNet is used by the image model to extract the image feature map f_I from a raw image I, VGGNet is used:


Figure: CNN based image model

$$f_I = CNN_{vgg}(I) \tag{1}$$

use a single layer perceptron to transform each feature vector to a new vector that has the dimension (dxm), d being the dimension of question vector, m being no. of regions.

$$v_I = tanh(W_I f_I + b_I) \in R^{dm}$$
⁽²⁾

CNN based question model

First embed words to vectors $x_t = W_e q_t$ and get the question vector by concatenating the word vectors:

$$x_{1:T} = [x_1, x_2, \dots, x_T]$$
(3)

$$h = [\tilde{h}_1, \tilde{h}_2, \tilde{h}_3] \tag{4}$$

where h_i is the output CNN model with i-gram convolution filter. Hence, $v_Q = h \in \mathbb{R}^d$ is the CNN based question vector.

For attention regions in the image, v_{I} and v_{Q} are fed into single layer neural network and softmax function

$$h_A = tanh(W_{I,A}v_I \oplus (W_{Q,A}v_Q + b_A))$$
(5)

$$p_I = softmax(W_P h_A + b_P) \in R^m \tag{6}$$

where $v_{I} \in R^{d \times m}$, $\{W_{I,A}, \ W_{Q,A}\} \in R^{k \times D}$, $W_{P} \in R^{1 \times k}$

$$s_I = \sum_i p_i v_i \in R^d, i = 1, 2..m$$
 (7)

$$u = s_I + v_Q \tag{8}$$

 $u \in R^d$ is the modified query vector. This process is repeated K times via K SAN layers to get u^K , which is then used for final classification.

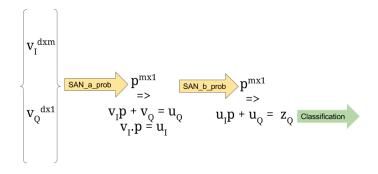


Figure: SAN_a obtains an m dimensional probability vector p^m to modify query vector v_Q to u_Q as given in original paper, and then i^th region of v_I is multiplied by i^th element of p^m to obtain modified image matrix u_I . SAN_b is normal SAN layer on u_I and u_Q to get z_Q

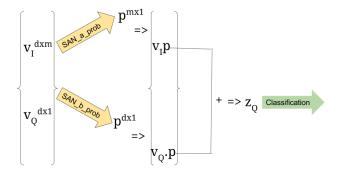


Figure: SAN_a obtains p^m to simply obtain modified query $v_I p$. SAN_b obtains probability vector p^d that modifies query to get $v_Q p$. Both these are added to get z_Q

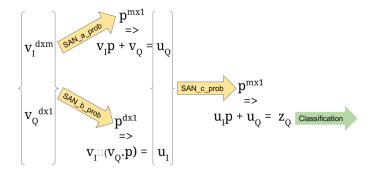


Figure: SAN_a obtains SAN_a obtains p^m to simply obtain modified query u_Q . SAN_b obtains p^d to modify image matrix v_I by adding p.q to each row, to get u_I . Finally, u_I and u_Q are passed through normal SAN layer to get z_Q .

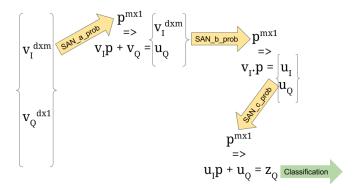


Figure: It is just an alternate version of Model 2 where SAN_a is used to get u_Q , then u_Q and v_I are passed in SAN_b to finally get u_I , and then we have normal SAN_c over u_I and u_Q to get z_Q

Comparison of the results we obtained:

Method	Accuracy
Model Accuracy (SAN)	52.255% (50 epochs)
Model Accuracy (Model 1)	52.213%(50 epochs)
Model Accuracy (Model 2)	35.5% (20 epochs)
Model Accuracy (Model 3)	47.6% (4.12 epochs)
Model Accuracy (Model 4)	52.424% (50 epochs)

- We have designed and successfully implemented four different co-attention models over the existing SAN model.
- Per person contribution:
 - Prakhar: Model Designing of model 3 and Implementation on GPU.
 - Preetansh: Model Designing of model 2,4 and Implementation on GPU.
 - Viswanadh: Model Designing of model 1, GPU configuration, Implementation on GPU.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Smola, *Stacked Attention Networks for Image Question Answering*. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June, 2016. Thank you.